Optimal Estimates from below for Biharmonic Green Functions
نویسندگان
چکیده
Optimal pointwise estimates are derived for the biharmonic Green function in arbitrary C4,γ -smooth domains. Maximum principles do not exist for fourth order elliptic equations and the Green function may change sign. It prevents using a Harnack inequality as for second order problems and hence complicates the derivation of optimal estimates. The present estimate is obtained by an asymptotic analysis. The estimate shows that this Green function is positive near the singularity and that a possible negative part is small in the sense that it is bounded by the product of the squared distances to the boundary.
منابع مشابه
On Estimates of Biharmonic Functions on Lipschitz and Convex Domains
Abstract. Using Maz’ya type integral identities with power weights, we obtain new boundary estimates for biharmonic functions on Lipschitz and convex domains in R. For n ≥ 8, combined with a result in [S2], these estimates lead to the solvability of the L Dirichlet problem for the biharmonic equation on Lipschitz domains for a new range of p. In the case of convex domains, the estimates allow u...
متن کاملOn The Mean Convergence of Biharmonic Functions
Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...
متن کاملBiharmonic Green Functions on Homogeneous Trees
The study of biharmonic functions under the ordinary (Euclidean) Laplace operator on the open unit disk D in C arises in connection with plate theory, and in particular, with the biharmonic Green functions which measure, subject to various boundary conditions, the deflection at one point due to a load placed at another point. A homogeneous tree T is widely considered as a discrete analogue of t...
متن کاملA priori error estimates for the finite element discretization of optimal distributed control problems governed by the biharmonic operator
In this article a priori error estimates are derived for the finite element discretization of optimal distributed control problems governed by the biharmonic operator. The state equation is discretized in primal mixed form using continuous piecewise biquadratic finite elements, while piecewise constant approximations are used for the control. The error estimates derived for the state variable a...
متن کاملUniform Estimates for Polyharmonic Green Functions in Domains with Small Holes
When passing to biharmonic or –more general– polyharmonic equations, i.e. the cases k ≥ 2, the maximum principle is no longer available and positivity issues remain valid only in a very weak and modified sense. Mathematical contributions on this topic go back at least to Boggio and Hadamard [2,7]; these papers are also fundamental for subsequent works on estimating polyharmonic Green functions....
متن کامل